Pages


History of Computers (Generation of Computers)

1960 – Gene Amdahl designed IBM System/360 main  frame computer – 1st general purpose digital using  Integrated circuits.
1963 – Olsen with Digital Equipment Corporation produced PDP-1 – 1st Mini computer.


------------------------------------------------------------------
Ted Hoff of Intel Corporation produced microprocessor Intel 4004.


The Intel 4004 was a 4-bit central processing unit (CPU) released by Intel Corporation in 1971. It was the first complete CPU on one chip, and also the first commercially available microprocessor. Such a feat of integration was made possible by the use of then-new silicon gate technology allowing a higher number of transistors and a faster speed than was possible before.


History and production

 National Semiconductor was a second source manufacturer of the 4004, under their part number INS4004.

The first public mention of 4004 was an advertisement in the November 15, 1971 edition of Electronic News, though unconfirmed reports put the date of first delivery as early as March 1971. Packaged in a 16-pin ceramic dual in-line package, the 4004 was the first commercially available computer processor designed and manufactured by chip maker Intel, which had previously made semiconductor memory chips. The chief designers of the chip were Federico Faggin and Ted Hoff of Intel, and Masatoshi Shima of Busicom (later of ZiLOG, founded by Faggin).

Faggin, the sole chip designer among the engineers on the MCS-4 project, was the only one with experience in MOS random logic and circuit design. He also had the crucial knowledge of the new silicon gate process technology with self-aligned gates, which he had created at Fairchild in 1968. At Fairchild in 1968, Faggin also designed and manufactured the world's first commercial IC using SGT, the Fairchild 3708 [3]. As soon as he joined the Intel MOS Department he created a new random design methodology based on silicon gate, and contributed many technology and circuit design inventions that enabled a single chip microprocessor to become a reality for the first time. His methodology set the design style for all the early Intel microprocessors and later for the Zilog’s Z80. He also led the MCS-4 project and was responsible for its successful outcome (1970–1971). Ted Hoff, head of the Application Research Department, contributed only the architectural proposal for Busicom working with Stanley Mazor in 1969, then he moved on to other projects. When asked where he got the ideas for the architecture of the first microprocessor, Hoff related that Plessey, "a British tractor company", had donated a minicomputer to Stanford, and he had "played with it some" while he was there. Shima designed the Busicom calculator firmware and assisted Faggin during the first six months of the implementation. The manager of Intel's MOS Design Department was Leslie L. Vadász.[4] At the time of the MCS-4 development, Vadasz's attention was completely focused on the mainstream business of semiconductor memories and he left the leadership and the management of the MCS-4 project to Faggin.

The Japanese company Busicom had designed their own special purpose LSI chipset for use in their Busicom 141-PF calculator with integrated printer and commissioned Intel to develop it for production. However, Intel determined it was too complex and would use non-standard packaging and so it was proposed that a new design produced with standard 16-pin DIP packaging and reduced instruction set be developed.This resulted in the 4004, which was part of a family of chips, including ROM, DRAM and serial to parallel shift register chips. The 4004 was built of approximately 2,300 transistors and was followed the next year by the first ever 8-bit microprocessor, the 3,500 transistor 8008 (and the 4040, a revised 4004). It was not until the development of the 40-pin 8080 in 1974 that the address and data buses would be separated, giving faster and simpler access to memory.

The 4004 employed a 10-μm silicon-gate enhancement load pMOS technology and could execute approximately 92,000 instructions per second; a single instruction cycle was 10.8 microseconds. The original clock speed design goal was 1MHz, the same as the IBM 1620 Model I.[citation needed]

The Intel 4004 was designed by physically cutting sheets of Rubylith into thin strips to lay out the circuits to be printed, a process made obsolete by current computer graphic design capabilities.



Name and variants

When Federico Faggin designed the MCS-4 family, he also christened the chips with distinct names: 4001, 4002, 4003, and 4004, breaking away from the numbering scheme used by Intel at that time which would have required the names 1302, 1105, 1507, and 1202 respectively. Had he followed Intel's number sequence, the idea that the chips were part of a family of components intended to work seamlessly together would have been lost. Intel's early numbering scheme for integrated circuits used a four-digit number for each component. The first digit indicated the process technology used, the second digit indicated the generic function, and the last two digits of the number were used to indicate the sequential number in the development of the component. The 8008 microprocessor was originally called 1201, per Intel’s naming conventions. Before its market introduction, the 1201 was renamed 8008, following the new naming convention started with the 4001/2/3/4.

The 4004 was part of the MCS-4 family of LSI chips that could be used to build digital computers with varying amounts of memory. The other members of the MCS-4 family were memories and input/output circuits, which are necessary to implement a complete computer. The 4001 was a ROM (read-only memory) with four lines of output; the 4002 was a RAM (random access memory) with four lines of input/output. The 4003 was a static shift register to be used for expanding the I/O lines, for example, for keyboard scanning or for controlling a printer.

The 4004 included control functions for memory and I/O, which are not normally handled by the microprocessor.



Technical specifications


Intel 4004 DIP chip pinout
Maximum clock speed was 740 kHz
Instruction cycle time: 10.8 µs[9] (8 clock cycles / instruction cycle)
Instruction execution time 1 or 2 instruction cycles (10.8 or 21.6 µs), 46300 to 92600 instructions per second
Separate program and data storage. Contrary to Harvard architecture designs, however, which use separate buses, the 4004, with its need to keep pin count down, used a single multiplexed 4-bit bus for transferring:
12-bit addresses
8-bit instructions
4-bit data words
Instruction set contained 46 instructions (of which 41 were 8 bits wide and 5 were 16 bits wide)
Register set contained 16 registers of 4 bits each
Internal subroutine stack 3 levels deep.

Support chips


4001: 256-byte ROM (256 8-bit program instructions), and one built-in 4-bit I/O port. A 4001 ROM+I/O chip cannot be used in a system along with a 4008/4009 pair.[citation needed]
4002: 40-byte RAM (80 4-bit data words), and one built-in 4-bit output port; the RAM portion of the chip is organized into four "registers" of 20 4-bit words:
16 data words (used for mantissa digits in the original calculator design)
4 status words (used for exponent digits and signs in the original calculator design)
4003: 10-bit parallel output shift register for scanning keyboards, displays, printers, etc.
4008: 8-bit address latch for access to standard memory chips, and one built-in 4-bit chip select and I/O port
4009: program and I/O access converter to standard memory and I/O chips
4269: keyboard/display interface
4289: memory interface (combined functions of 4008 and 4009)
Numerous versions of the Intel MCS-4 line of processors were produced. The earliest versions are ceramic and use a Zebra pattern of white and gray on the back of the chips. The next generation of the chip is plane white ceramic. Current versions of MCS-4 family are produced with plastic. Collectors of these chips have peaked in recent years due to the significance that is associated with this achievement.

Use

The first commercial product to use a microprocessor was the Busicom calculator 141-PF.

According to Nick Tredennick, a microprocessor designer and expert witness to the Boone/Hyatt patent case[clarification needed]:
Here are my opinions from [the] study [I conducted for the patent case]. The first microprocessor in a commercial product was the Four Phase Systems AL1. The first commercially available (sold as a component) microprocessor was the 4004 from Intel.


A popular myth has it that Pioneer 10, the first spacecraft to leave the solar system, used an Intel 4004 microprocessor. According to Dr. Larry Lasher of Ames Research Center, the Pioneer team did evaluate the 4004, but decided it was too new at the time to include in any of the Pioneer projects.[citation needed] The myth was repeated by Federico Faggin himself in a lecture for the Computer History Museum in 200
---------------------------------------------------------------------------------
1975 – H.Edward Roberts – 1st Microcomputer.


A microcomputer is a computer with a microprocessor as its central processing unit. They are physically small compared to mainframe and minicomputers. Many microcomputers (when equipped with a keyboard and screen for input and output) are also personal computers (in the generic sense).

The abbreviation "micro" was common during the 1970s and 1980s, but has now fallen out of common usage.



Origins

The term "Microcomputer" came into popular use after the introduction of the minicomputer, although Isaac Asimov used the term microcomputer in his short story "The Dying Night" as early as 1956 (published in The Magazine of Fantasy and Science Fiction in July that year). Most notably, the microcomputer replaced the many separate components that made up the minicomputer's CPU with one integrated microprocessor chip. The earliest models such as the Altair 8800 were often sold as kits to be assembled by the user, and came with as little as 256 bytes of RAM, and no input/output devices other than indicator lights and switches, useful as a proof of concept to demonstrate what such a simple device could do. The term "Microcomputer" also was seriously employed for the first time designating the Micral N as the first solid state machine designed with a microprocessor. However, as microprocessors and semiconductor memory became less expensive, microcomputers in turn grew cheaper and easier to use:
Increasingly inexpensive logic chips such as the 7400 series allowed cheap dedicated circuitry for improved user interfaces such as keyboard input, instead of simply a row of switches to toggle bits one at a time.
Use of audio cassettes for inexpensive data storage replaced manual re-entry of a program every time the device was powered on.
Large cheap arrays of silicon logic gates in the form of Read-only memory and EPROMs allowed utility programs and self-booting kernels to be stored within microcomputers. These stored programs could automatically load further more complex software from external storage devices without user intervention, to form an inexpensive turnkey system that does not require a computer expert to understand or to use the device.
Random access memory became cheap enough to afford dedicating approximately 1-2 kilobytes of memory to a video display controller frame buffer, for a 40x25 or 80x25 text display or blocky color graphics on a common household television. This replaced the slow, complex, and expensive teletypewriter that was previously common as an interface to minicomputers and mainframes.

All these improvements in cost and usability resulted in an explosion in their popularity during the late 1970s and early 1980s. A large number of computer makers packaged microcomputers for use in small business applications. By 1979, many companies such as Cromemco, Processor Technology, IMSAI, Northstar, Southwest Technical Products Corporation, Ohio Scientific, Altos, Morrow Designs and others produced systems designed either for a resourceful end user or consulting firm to deliver business systems such as accounting, database management, and word processing to small businesses. This allowed businesses unable to afford leasing of a minicomputer or time-sharing service the opportunity to automate business functions, without (usually) hiring a full-time staff to operate the computers. A representative system of this era would have used an S100 bus, an 8-bit processor such as a Intel 8080 or Zilog Z80, and either CP/M or MP/M operating system. The increasing availability and power of desktop computers for personal use attracted the attention of more software developers. In time, and as the industry matured, the market for personal computers standardized around IBM PC compatibles running DOS, and later Windows. Modern desktop computers, video game consoles, laptops, tablet PCs, and many types of handheld devices, including mobile phones, pocket calculators, and industrial embedded systems, may all be considered examples of microcomputers according to the definition given above.


1976 – Seymour Cray CRAY-1 Supercomputer.

The history of supercomputing goes back to the 1960s when a series of computers at Control Data Corporation (CDC) were designed by Seymour Cray to use innovative designs and parallelism to achieve superior computational peak performance.[8] The CDC 6600, released in 1964, is generally considered the first supercomputer.[9][10]

Cray left CDC in 1972 to form his own company.[11] Four years after leaving CDC, Cray delivered the 80 MHz Cray 1 in 1976, and it become one of the most successful supercomputers in history.[12][13] The Cray-2 released in 1985 was an 8 processor liquid cooled computer and Fluorinert was pumped through it as it operated. It performed at 1.9 gigaflops and was the world's fastest until 1990.[14]

While the supercomputers of the 1980s used only a few processors, in the 1990s, machines with thousands of processors began to appear both in the United States and in Japan, setting new computational performance records. Fujitsu's Numerical Wind Tunnel supercomputer used 166 vector processors to gain the top spot in 1994 with a peak speed of 1.7 gigaflops per processor.[15][16] The Hitachi SR2201 obtained a peak performance of 600 gigaflops in 1996 by using 2048 processors connected via a fast three dimensional crossbar network.[17][18][19] The Intel Paragon could have 1000 to 4000 Intel i860 processors in various configurations, and was ranked the fastest in the world in 1993. The Paragon was a MIMD machine which connected processors via a high speed two dimensional mesh, allowing processes to execute on separate nodes; communicating via the Message Passing Interface.
--------------------------------------------------------------------
1977 – Stephen Wonzniak and Steven Jobs built first Apple Microcomputer.


The Apple II series (trademarked with square brackets as "Apple ][") is a set of 8-bit home computers, one of the first highly successful mass-produced microcomputer products,[1] designed primarily by Steve Wozniak, manufactured by Apple Computer (now Apple Inc.) and introduced in 1977 with the original Apple II. In terms of ease of use, features and expandability the Apple II was a major technological advancement over its predecessor, the Apple I, a limited-production bare circuit board computer for electronics hobbyists that pioneered many features that made the Apple II a commercial success. Introduced at the West Coast Computer Faire in 1977, the Apple II was among the first successful personal computers; it launched the Apple company into a successful business (and allowed several related companies to start). Throughout the years, a number of models were sold, with the most popular model remaining relatively little changed into the 1990s. By the end of production in 1993, somewhere between five and six million Apple II series computers (including about 1.25 million Apple IIGS models) had been produced.

The Apple II became one of several recognizable and successful computers during the 1980s and early 1990s, although this was mainly limited to the USA. It was aggressively marketed through volume discounts and manufacturing arrangements to educational institutions which made it the first computer in widespread use in American secondary schools. The effort to develop educational and business software for the Apple II, including the 1979 release of the popular VisiCalc spreadsheet, made the computer especially popular with business users and families.

The original Apple II operating system was contained in ROM along with Integer BASIC. Programs were entered, then saved and loaded on cassette tape. When the Disk II was implemented in 1978 by Steve Wozniak, a Disk Operating System or DOS was commissioned. The final and most popular version of this software was Apple DOS 3.3. Some commercial Apple II software booted directly and did not use standard DOS formats. This discouraged the copying or modifying of the software on the disks and improved loading speed. Apple DOS was superseded by ProDOS, which supported a hierarchical filesystem and larger storage devices. With an optional third-party Z80-based expansion card[6] the Apple II could boot into the CP/M operating system and run WordStar, dBase II, and other CP/M software. At the height of its evolution, towards the late 1980s, the platform had the graphical look of a hybrid of the Apple II and Macintosh with the introduction of the Apple IIGS. By 1992, the platform had 16-bit processing capabilities, a mouse-driven Graphical User Interface, and graphics and sound capabilities far beyond the original.

Despite the introduction of the Motorola 68000-based Apple Lisa system in 1983, and its more successful cousin the Macintosh in 1984, the relatively unsophisticated Apple II series was Apple's primary revenue source for most of the following decade. At its peak, it was a billion-dollar-a-year industry with its associated community of third-party developers and retailers. The Apple IIGS was sold until the end of 1992; the last II-series Apple in production, the IIe, was discontinued on October 15, 1993.
---------------------------------------------------------------------
1980 – Lower cost Personal Computers.

A personal computer (PC) is any general-purpose computer whose size, capabilities, and original sales price make it useful for individuals, and which is intended to be operated directly by an end-user with no intervening computer operator. In contrast, the batch processing or time-sharing models allowed larger, more expensive minicomputer and mainframe systems to be used by many people, usually at the same time. Large data processing systems require a full-time staff to operate efficiently. Consoles can also be considered personal computers.

Software applications for personal computers include, but are not limited to, word processing, spreadsheets, databases, Web browsers and e-mail clients, digital media playback, games, and myriad personal productivity and special-purpose software applications. Modern personal computers often have connections to the Internet, allowing access to the World Wide Web and a wide range of other resources. Personal computers may be connected to a local area network (LAN), either by a cable or a wireless connection. A personal computer may be a desktop computer or a laptop, tablet, or a handheld PC.

While early PC owners usually had to write their own programs to do anything useful with the machines, today's users have access to a wide range of commercial software and free software, which is provided in ready-to-run or ready-to-compile form. Since the early 1990s, Microsoft software and Intel hardware have dominated much of the personal computer market, first with MS-DOS and then with the Wintel platform. Popular alternatives to Microsoft's Windows operating systems include Apple's Mac OS X and open-source Linux-based operating systems such as Ubuntu. AMD is the major alternative to Intel's central processing units. Applications and games for PCs are typically developed and distributed independently from the hardware or OS manufacturers, whereas software for many mobile phones and other portable systems is approved and distributed through a centralized online store.[1][2]

In July and August 2011, marketing businesses and journalists began to talk about the 'Post-PC Era', in which the desktop form factor was being replaced with more portable computing such as netbooks, Tablet PCs, and smartphones

History

In what was later to be called The Mother of All Demos, SRI researcher Douglas Engelbart in 1968 gave a preview of what would become the staples of daily working life in the 21st century - e-mail, hypertext, word processing, video conferencing, and the mouse. The demonstration required technical support staff and a mainframe time-sharing computer that were far too costly for individual business use at the time.

By the early 1970s, people in academic or research institutions had the opportunity for single-person use of a computer system in interactive mode for extended durations, although these systems would still have been too expensive to be owned by a single person.

In the 1970s Hewlett Packard introduced fully BASIC programmable computers that fit entirely on top of a desk, including a keyboard, a small one-line display and printer. The Xerox Alto, developed in 1973 at Xerox's Palo Alto Research Center (PARC), had a graphical operating system (GUI) that later served as inspiration for Apple Computer's Macintosh, and Microsoft's Windows operating system. The Wang 2200 of 1973 had a full-size cathode ray tube (CRT) and cassette tape storage. The IBM 5100 in 1975 had a small CRT display and could be programmed in BASIC and APL. These were generally expensive specialized computers sold for business or scientific uses. The introduction of the microprocessor, a single chip with all the circuitry that formerly occupied large cabinets, led to the proliferation of personal computers after 1975.

Early personal computers — generally called microcomputers — were sold often in kit form and in limited volumes, and were of interest mostly to hobbyists and technicians. Minimal programming was done with toggle switches to enter instructions, and output was provided by front panel lamps. Practical use required adding peripherals such as keyboards, computer displays, disk drives, and printers. Micral N was the earliest commercial, non-kit microcomputer based on a microprocessor, the Intel 8008. It was built starting in 1972 and about 90,000 units were sold. In 1976 Steve Jobs and Steve Wozniak sold the Apple I computer circuit board, which was fully prepared and contained about 30 chips. The first successfully mass marketed personal computer was the Commodore PET introduced in January 1977. It was soon followed by the Apple II (usually referred to as the "Apple ][") in June 1977, and the TRS-80 from Radio Shack in November 1977. Mass-market ready-assembled computers allowed a wider range of people to use computers, focusing more on software applications and less on development of the processor hardware.

Through the 1980s, computers were further developed for household use, with software for personal productivity, programming and games. One such machine, the Commodore 64, totaled 17 million units sold, making it the best-selling single personal computer model of all time.[4] Another such computer, the NEC PC-98, sold more than 18 million units.[5] Somewhat larger and more expensive systems (although still low-cost compared with minicomputers and mainframes) were aimed at office and small business use. Workstations are characterized by high-performance processors and graphics displays, with large local disk storage, networking capability, and running under a multitasking operating system.

IBM 5150 as of 1981

Eventually, due to the influence of the IBM PC on the personal computer market, personal computers and home computers lost any technical distinction. Business computers acquired color graphics capability and sound, and home computers and game systems users used the same processors and operating systems as office workers. Mass-market computers had graphics capabilities and memory comparable to dedicated workstations of a few years before. Even local area networking, originally a way to allow business computers to share expensive mass storage and peripherals, became a standard feature of personal computers used at home.

In 1982 "The Computer" was named Machine of the Year by Time Magazine.



Types

Stationary


A workstation is a high-end personal computer designed for technical or scientific applications. Intended primarily to be used by one person at a time, they are commonly connected to a local area network and run multi-user operating systems. Workstations are used for tasks such as computer-aided design, drafting and modeling, computation-intensive scientific and engineering calculations, image processing, architectural modeling, and computer graphics for animation and motion picture visual effects.[30]

Desktop computer


Prior to the wide spread usage of PCs, a computer that could fit on a desk was remarkably small. Today the phrase usually indicates a particular style of computer case. Desktop computers come in a variety of styles ranging from large vertical tower cases to small form factor models that can be tucked behind an LCD monitor. In this sense, the term 'desktop' refers specifically to a horizontally oriented case, usually intended to have the display screen placed on top to save space on the desk top. Most modern desktop computers have separate screens and keyboards.

Gaming Computer

Games have been on computers since 1962 when Spacewar! was released. Today Personal Computer Gaming or PC gaming is a very popular pastime. Gaming computers tend to also be about the looks of the case rather than just the specifications of the hardware. A gaming computer needs to be much more powerful than a PC that someone is using to do office work and to surf the internet. A Gaming Computer has to have a good graphics card so that it can process all the 3D models and shapes that are on the screen. In addition the Central processing unit or CPU has to do more work to calculate game mechanics, figure out gravity, and assist with the graphics and process the sound. Most serious gamers prefer to build their own computer or rig. This is because they can get exactly what they want and the price is a lot cheaper. When building a ‘high end’ computer the price is generally over $1000 with the motherboard costing from $300–$800 and the processor costing around $400–$500 and graphics cards that can cost more than $600. Many people say this is expensive but it's comparable to a video game console such as an Xbox 360 or a PlayStation 3 as proced when released. In addition, a computer can be used for much more than just gaming, and a $1000 computer will last at least 5 years. The choice of parts to build a computer are vast as many companies build different parts of the system.

Single unit

Single unit PCs (also known as all-in-one PCs) are a subtype of desktop computers, which combine the monitor and case of the computer within a single unit. The monitor often utilizes a touchscreen as an optional method of user input, however detached keyboards and mice are normally still included. The inner components of the PC are often located directly behind the monitor, and many are built similarly to laptops.

Nettop


A subtype of desktops, called nettops, was introduced by Intel in February 2008 to describe low-cost, lean-function, desktop computers. A similar subtype of laptops (or notebooks) are the netbooks (see below). The product line features the new Intel Atom processor which specially enables them to consume less power and to be built into small enclosures.

Home theater PC


A home theater PC (HTPC) is a convergence device that combines the functions of a personal computer and a digital video recorder. It is connected to a television or a television-sized computer display and is often used as a digital photo, music, video player, TV receiver and digital video recorder. Home theater PCs are also referred to as media center systems or media servers. The general goal in a HTPC is usually to combine many or all components of a home theater setup into one box. They can be purchased pre-configured with the required hardware and software needed to add television programming to the PC, or can be cobbled together out of discrete components as is commonly done with MythTV, Windows Media Center, GB-PVR, SageTV, Famulent or LinuxMCE. More recently, home theatre PCs have been given the ability to connect to services that play movies and TV shows on demand.

Mobile

Laptop


 A laptop computer or simply laptop, also called a notebook computer, is a small personal computer designed for portability. Usually all of the interface hardware needed to operate the laptop, such as USB ports (previously parallel and serial ports), graphics card, sound channel, etc., are built in to a single unit. Laptops contain high capacity batteries that can power the device for extensive periods of time, enhancing portability. Once the battery charge is depleted, it will have to be recharged through a power outlet. In the interest of saving power, weight and space, they usually share RAM with the video channel, slowing their performance compared to an equivalent desktop machine. For this reason, Desktop or Gaming computers are generally preferred to laptop PCs for gaming purposes.

One main drawback of the laptop is sometimes, due to the size and configuration of components, relatively little can be done to upgrade the overall computer from its original design. Internal upgrades are either not manufacturer recommended, can damage the laptop if done with poor care or knowledge, or in some cases impossible, making the desktop PC more modular. Some internal upgrades, such as memory and hard disks upgrades are often easy, a display or keyboard upgrade is usually impossible. The laptop has the same access as the desktop to the wide variety of devices, such as external displays, mice, cameras, storage devices and keyboards, which may be attached externally through USB ports and other less common ports such as external video.

A subtype of notebooks, called subnotebooks, are computers with most of the features of a standard laptop computer but smaller. They are larger than hand-held computers, and usually run full versions of desktop/laptop operating systems. Ultra-Mobile PCs (UMPC) are usually considered subnotebooks, or more specifically, subnotebook Tablet PCs (see below). Netbooks are sometimes considered in this category, though they are sometimes separated in a category of their own (see below).

Desktop replacement


A desktop replacement computer (DTR) is a personal computer that provides the full capabilities of a desktop computer while remaining mobile. They are often larger, bulkier laptops. Because of their increased size, this class of computer usually includes more powerful components and a larger display than generally used in smaller portable computers and can have a relatively limited battery capacity (or none at all). Some use a limited range of desktop components to provide better performance at the expense of battery life. These are sometimes called desknotes, a portmanteau of the words "desktop" and "notebook," though the term is also applied to desktop replacement computers in general.[31]

Netbook


Netbooks (also called mini notebooks or subnotebooks) are a rapidly evolving[32] category of small, light and inexpensive laptop computers suited for general computing and accessing web-based applications; they are often marketed as "companion devices," that is, to augment a user's other computer access.[32] Walt Mossberg called them a "relatively new category of small, light, minimalist and cheap laptops."[33] By August 2009, CNET called netbooks "nothing more than smaller, cheaper notebooks.".[32]

Initially, their primary defining characteristic was the lack of an optical disc drive, requiring it to be a separate and external device. This has become less important as flash memory devices have gradually increased in capacity, replacing the writable optical disc (e.g. CD-RW, DVD-RW) as a transportable storage medium.

At their inception in late 2007 — as smaller notebooks optimized for low weight and low cost[34] — netbooks omitted key features (e.g., the optical drive), featured smaller screens and keyboards, and offered reduced specification and computing power. Over the course of their evolution, netbooks have ranged in size from below 5 in[35] to over 13 in,[36] and from ~1 kg (2-3 pounds). Often significantly less expensive than other laptops,[37] by mid-2009, netbooks had been offered to users "free of charge", with an extended service contract purchase of a cellular data plan.[38]

In the short period since their appearance, netbooks have grown in size and features, now converging with new smaller, lighter notebooks. By mid 2009, CNET noted "the specs are so similar that the average shopper would likely be confused as to why one is better than the other," noting "the only conclusion is that there really is no distinction between the devices."[32]
Tablet PC


A tablet PC is a notebook or slate-shaped mobile computer. Its touchscreen or graphics tablet/screen hybrid technology allows the user to operate the computer with a stylus or digital pen, or a fingertip, instead of a keyboard or mouse. The form factor offers a more mobile way to interact with a computer. Tablet PCs are often used where normal notebooks are impractical or unwieldy, or do not provide the needed functionality. Recently, tablet PCs have been given operating systems normally used on phones, like Android or iOS. This gives them many of the same uses as a phone, but with more power and functionality.

Ultra-mobile PC


The ultra-mobile PC (UMPC) is a specification for a small form factor of tablet PCs. It was developed as a joint development exercise by Microsoft, Intel, and Samsung, among others. Current UMPCs typically feature the Windows XP, Windows Vista, Windows 7, or Linux operating system and low-voltage Intel Atom or VIA C7-M processors.

Pocket PC

A pocket PC is a hardware specification for a handheld-sized computer (personal digital assistant) that runs the Microsoft Windows Mobile operating system. It may have the capability to run an alternative operating system like NetBSD or Linux. It has many of the capabilities of modern desktop PCs.

Currently there are tens of thousands of applications for handhelds adhering to the Microsoft Pocket PC specification, many of which are freeware. Some of these devices also include mobile phone features and thus actually represent a smartphone. Microsoft compliant Pocket PCs can also be used with many other add-ons like GPS receivers, barcode readers, RFID readers, and cameras. In 2007, with the release of Windows Mobile 6, Microsoft dropped the name Pocket PC in favor of a new naming scheme. Devices without an integrated phone are called Windows Mobile Classic instead of Pocket PC. Devices with an integrated phone and a touch screen are called Windows Mobile Professional.


-----------------------------------------------------------------------------